
1

Attested Append-Only Memory: 

Making Adversaries Stick to 

their Word

Presented by Chuan He



2

Talk Outline

• Introduction and Motivation

• Attested Append-Only Memory (A2M)

• A2M Protocols

• Evaluation

• Conclusion



3

Motivation

 You want to build a service

– Easy on a single machine

– Replicate service on multiple machines

• Replicated services must appear as single 

server

– Linearizability: Completed client requests appear to 

have been processed in a single, totally ordered, 

serial schedule consistent with the order they were 

submitted



4

Motivation

 You want to build a service

– Easy on a single machine

– Replicate service on multiple machines

• Replicated services must appear as single 

server

– Equivocation: Different lies to different people



Servers Equivocating to Clients



Servers Equivocating to Servers



7

Questions

• Does preventing equivocation help at all?

– Can we improve upon the 1/3 Byzantine fault bound?

• How do we prevent equivocation?

– Is there any minimal system support?



8

Talk Outline

• Introduction and Motivation

• Attested Append-Only Memory (A2M)

• A2M Protocols

• Evaluation

• Conclusion



9

Attested Append-Only Memory 

(A2M)

• A set of numbered logs

• Each log entry contains
– Sequence number

– Stored value

– Crypto digest

• lookup / end

– Get a log entry

– Attest (sequence number, 
value, history digest) 

– Attest freshness

– Attest the end of log

• append / advance

– Cannot overwrite



10

Attested Append-Only Memory 

(A2M)

• append / advance

• Important feature
– Cannot equivocate



11

Background: PBFT

time

Primary

Client1

Preprepare Prepare Commit

Request

Reply

Execute








s1

s2

s3

s4

Quorum = 3

[1,a]

Client2
[1,b]Quorum: matching messages 

from different replicas

req,resp

Agreement Execution



12

A2M-PBFT-E(Execution)

time

Primary

Client1

Preprepare Prepare Commit

Request

Reply

Execute








s1

s2

s3

s4

Quorum = 3

Attested by A2M

req,resp,

<seq,req,hist>Request log

A2M



13

A2M-PBFT-EA (2f + 1 replicas)

time

Primary

Client1

Preprepare Prepare Commit

Request

Reply

Execute






s1

s2

s3

Quorum = 2

Attested by A2M

req,resp,

<seq,req,hist>



14

Protocol Trade-offs

3f+12/31/3 A2M-PBFT-E

1/2 A2M-PBFT-EA

PBFT1/3



15

Evaluation Setup

• Implemented A2M-PBFT-E and A2M-PBFT-EA

• A2M protocols use signatures or MACs for 
authentication

• Four replicas in a LAN. Each replica has its own A2M.

• Microbenchmarks
– Null operation with various request or response sizes

• Macrobenchmarks: NFS
– Software package compilation



Evaluation - Microbenchmarks



Evaluation - Macrobenchmarks



Varying delay time



19

Conclusions

• Present A2M, a small trusted, log-based memory
– Simple and easily implementable

– Prevent equivocation

• Improve fault tolerance by forcing servers to commit 
to a single history of operations
– Improve fault bounds of BFT state machine replication

– Achieve linearizability in an untrusted single-server system

– The benefits are achieved with small performance 
overhead



20

Thank you!



21

Related Work

• Weaken the guarantee
– fork* consistency [NSDI07]

– fork consistency [OSDI04]

• Standard trusted hardware like TPM
– does not improve the fault bound

• Auditing
– PeerReview [SOSP07], CATS [FAST07]

• Shared file servers
– SUNDR[OSDI04], Ivy [OSDI02], Plutus[FAST03]

• Separating agreement from execution

• Symmetric faults – hybrid fault model

• Group communication


