Attested Append-Only Memory:
Making Adversaries Stick to
their Word

Presented by Chuan He

Talk Outline

e Introduction and Motivation

Attested Append-Only Memory (A2M)

A2M Protocols

Evaluation

Conclusion

Motivation

« You want to build a service
— Easy on a single machine
— Replicate service on multiple machines

* Replicated services must appear as single
server

— Linearizability: Completed client requests appear to
have been processed in a single, totally ordered,

serial schedule consistent with the order they were
submitted

Motivation

« You want to build a service
— Easy on a single machine
— Replicate service on multiple machines

* Replicated services must appear as single
server

— Equivocation: Different lies to different people

Servers Equivocating to Clients

time

Servers Equivocating to Servers

ot Yt ¥
o 1%5 &

t|me

Questions

« Does preventing equivocation help at all?
— Can we improve upon the 1/3 Byzantine fault bound?

« How do we prevent equivocation?
— |Is there any minimal system support?

Talk Outline

e Introduction and Motivation

Attested Append-Only Memory (A2M)

A2M Protocols

Evaluation

Conclusion

Attested Append-Only Memory
(A2M)

« A set of numbered logs

« Each log entry contains
— Sequence number
— Stored value
— Crypto digest

® lookup / end
— Get a log entry

— Attest (sequence number,
value, history digest)

— Attest freshness
— Attest the end of log

e append / advance
— Cannot overwrite

lookup
1

append
Vnew

Attested Append-Only Memory
(A2M)

e append / advance
dy = h(H||z|[dr-1)

* Important feature
— Cannot equivocate

lookup
1

append
Vnew

10

Background: PBFT

‘ Agreement Execution

Primary Preprepare Prepare Commit

RN

)’("/ \}’}‘i"\\‘ Q\\req,resp

X \

\\\ Reply
N\ time.

[1,a]

Clientl

Execute

s3

y i

Request

Quorum: matching messages [1,b] _
from different replicas Client2

11

A2M-PBFT-E(Execution)

sz

Primary Preprepare Prepare Commit

te

sl O

sS2

/

Sk eI\

.l N\

) V)

Seq,req,

hist>

Request

—p Attested by A2M

A2M-PBFT-EA (2f + 1 replicas)

Primary Preprepare Prepare Commit Execute
%

req,resp,
<seq,req,hist>

Request

| Clientl

—p Attested by A2M
13

Protocol Trade-offs

PBFT

A2M-PBFT-E

A2M-PB

-EA

14

Evaluation Setup

« Implemented A2M-PBFT-E and A2M-PBFT-EA

« A2M protocols use signatures or MACs for
authentication

« Four replicas in a LAN. Each replica has its own A2ZM.

« Microbenchmarks
— Null operation with various request or response sizes

« Macrobenchmarks: NFS
— Software package compilation

15

Evaluation - Microbenchmarks

{HEII"-J

Processing time (ms
R W =

[

- / ! -

- A2M-PBFT-EA(sig) —+— "

A2M-PBFT-E(sig) -
"A2M-PBFT-EAMAC) ---
| A2M-PBFT-E(MAC) -~
PBFT - -m

- .

e
- k- g

0 1 2 3
Request size (KB)

0 1 2 3 4
Response size (KB)

Evaluation - Macrobenchmarks

NFS -S | -PBFT | -A2M-PBFT-E | -A2M-PBFT-E | -A2M-PBFT-EA | -A2M-PBFT-EA
Phase (sig) (MAC) (sig) (MAC)
Copy 0.219 | 0.709 1.026 0.728 2.141 0.763
Uncompress 1.015 3.027 4.378 3.103 8.601 3.236
Untar 2322 | 4.448 6.826 4.553 12.896 4.669
Configure 12.748 | 12.412 19.173 12.659 26.181 13.040
Make 7.241 7.461 9.778 7.500 11.379 7.510
Clean 0.180 | 0.298 0.640 0.312 0.742 0.311
Total 23.725 | 28.355 41.821 28.854 61.940 29.528

Table 1: Mean time to complete the six macrobenchmark phases in seconds.

Varying delay time

Additional NFS- | A2M-PBFT-E A2M-PBFT-E A2M-PBFT-EA A2M-PBFT-EA
latency (ps) (MAC) (MAC) with batching (MAC) (MAC) with batching
1 28.854 28.763 290.528 29.505

10 29.598 29.025 31.299 30.188

50 32.735 30.232 36.242 32.214

250 48.784 37.237 66.441 45,199

1000 117.59 65.813 192.53 101.62

Table 2: Mean time to complete the six macrobenchmark phases in seconds for different A2M additional latency costs.

Conclusions

« Present A2M, a small trusted, log-based memory
— Simple and easily implementable
— Prevent equivocation

« Improve fault tolerance by forcing servers to commit
to a single history of operations
— Improve fault bounds of BFT state machine replication
— Achieve linearizability in an untrusted single-server system

— The benefits are achieved with small performance
overhead

19

Thank you!

20

Related Work

Weaken the guarantee
— fork* consistency [NSDIO7]
— fork consistency [OSDI04]

Standard trusted hardware like TPM
— does not improve the fault bound

Auditing
— PeerReview [SOSP07], CATS [FAST07]

Shared file servers
— SUNDR[OSDI04], Ivy [OSDI02], Plutus[FASTO3]

Separating agreement from execution
Symmetric faults — hybrid fault model
Group communication

21

